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Abstract

Support vector machines (SVM’s) construct decision functions that are linear combinations
of kernel evaluations on the training set. The samples with non-vanishing coefficients are called
support vectors. In this work we establish lower (asymptotical) bounds on the number of
support vectors. On our way we prove several results which are of great importance for the
understanding of SVM’s. In particular, we describe to which “limit” SVM decision functions
tend, discuss the corresponding notion of convergence and provide some results on the stability
of SVM’s using subdifferential calculus in the associated reproducing kernel Hilbert space.
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1 Introduction and results

Given a sequence of pairs T' = ((z1,y1),---, (Zn,yn)) € (X x Y)", where X is a set and YV =
{—1,1}, the aim in binary classification is to predict the label y of a new unseen pair (z,y) € X xY.
The basic assumption in one of the most common models is that the training set T' consists of
i.i.d. pairs which are generated by an unknown distribution P on X x Y (cf. e.g. [4] for a thorough
treatment). In order to predict new labels a (measurable) decision function fr : X — R is
constructed by certain algorithms—the so-called classifiers. The prediction of fr for the label of
(x,y) is then sign fr(x).

We will assume throughout this work that X is a compact topological Hausdorff space and P
is a Borel probability measure on X x Y, where Y is equipped with the discrete topology. The
type of classifiers that we shall treat is based on one of the following optimization problems

: S
arg;rélg M + E;L(yuf(l“z)) (1)
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arg min >\||f||%{+—ZL(yi,f($i) ‘H’) J (2)
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respectively. Here, T = ((xl,yl),...,(xn,yn)) € (X x Y)" is a training set, A > 0 is a regu-
larization parameter, H is a reproducing kernel Hilbert space (RKHS) of a kernel k and L is a
suitable loss function (cf. the following section for precise definitions). The additional term b in
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(2) is called offset. The corresponding decision functions of these classifiers are fr ) or ny A+ IST, X
respectively, where fr )y € H and ( fT, As l;T, A) € H xR are arbitrary solutions of (1) and (2) (cf. the
following section for their existence). Various recently proposed algorithms including regulariza-
tion networks and several variants of support vector machines (SVM’s) belong to this type of
classifiers.

As shown in [13], [17] and [15] these classifiers can “learn” under specific conditions on L, H
and the behaviour of A = \,,. Here “learning” means that the probability for misclassifying a new
sample (z,y) generated by P tends to the smallest possible value. To make this precise the risk
of a measurable function f : X — R is defined by

Re(f) == P({(z,y) € X x ¥ :sign f(2) £ y}) .

The smallest achievable risk Rp := inf{Rp(f) | f: X — R measurable} is called the Bayes risk
of P. A classifier is called universally consistent if the risks of its decision functions converge to
the Bayes risk in probability for all P. The works [13], [17] and [15] establish conditions under
which the classifiers based on (1) and (2) are universally consistent.

In order to formulate our results, recall that by the well-known representer theorem (cf. [10]
for the most general form) the solutions fr y and fr,y of (1) and (2) are of the form

Zaik(xia ) ) (3)
=1

where ai,...,a, € R are suitable coefficients and T = ((z1,y1), .., (n,yn)). Obviously, only
samples x; with «; # 0 have an influence on f7 ) or fr ), respectively. Such samples are called

support vectors. Moreover, for a function f € H the minimal number of support vectors is defined
by

#SV(f) = min{nENU{oo} cday,...,ap #0and z1,...,2, € X Withf:Zaik(xi,.)} .
i=1

A representation of f is called minimal if it has #SV (f) support vectors. The next lemma
characterizes minimal representations (cf. the following section for definitions and Section 3.6 for
a proof):

Lemma 1.1 Let k be a universal kernel and f =" | a;k(z;,.) be a representation of f. Then
#SV(f) = n if and only if z1,...,x, are mutually different and o«; # 0 for all i = 1,...,n.
Furthermore, minimal representations are unique up to permutations of indexes.

In particular, if k£ is a universal kernel, T' = ((x1,y1),- .., (Zn,yn)) is a training set with mutually
different z1,...,z, and )" | ajk(=;,.) is a representation of fp  or fT, A with m support vectors
then #SV(frx) = m or #SV( fT,,\) = m, respectively. If T' contains repeated sample values,
i.e. z; = x; for some 4 # j, it can happen that the representation of the solution found by a specific
algorithm is not minimal. Indeed, considering the dual optimization problems for the hinge loss or
the squared hinge loss leads to algorithms which do not construct minimal representation in the
presence of repeated sample values. However, the above lemma gives a simple way for minimizing
a given representation: for all sample values z of T' summarize all coefficients «; with z; = z and
call the sum . Then chose one sample z; with z; = « as a representative, use «; as coefficient for
x; := xj, and remove all other samples z; with z; = 2 from T'. After this loop has been completed
eliminate all samples z; with zero coefficient.

We also have to define a quantity depending on L and P which gives a suitable lower bound
for #SV: for this we write C(a,t) := aL(1,t) + (1 — a)L(—1,%) for @ € [0,1] and ¢t € R. This

function can be used to compute the L-risk of a measurable function f : X — R, namely

Rip(f) = EgyyorLly, f(z) = /X C(P(1fx), f(x)) Px(dz)



Here, P is a Borel probability measure on X x Y, Px is the marginal distribution of P on X and
P(y|z) denotes a regular conditional probability (cf. also the next section). Therefore, in order to
minimize the L-risk we have to minimize the function C(«,.) for every a € [0,1]. This leads to

Fi(a) = {t €R : C(a,t) = minC(a, 3)}
seER
for all a € [0, 1]. Obviously, given a measurable selection f* of F} the function f*(P(1].)) actually
minimizes the L-risk, i.e.

Rep(f*(P(1.)) = Rep = inf{Rrp(f) | f: X — R measurable} .

Moreover, it turns out that for all sequences of measurable functions f, : X — R with Ry p(f,) =
Rr,p we obtain that (f,) tends to F;(P(1].)) in a certain sense (cf. Theorem 3.9 for details). In
particular, this convergence holds for the solutions of (1) and (2) if k is a universal kernel and the
regularization sequence (A,) converges “slowly enough” to 0. The latter was already claimed in
[6] and [17] in order to explain the learning ability of SVM’s.

Furthermore, we will see that for convex L the subdifferential calculus yields a representation
(3) of fr with

1
@ € _%aZL(yiafT,)\(xi)) (4)
foralli =1,...,n. Here, 0, L denotes the subdifferential operator of L with respect to the second

variable. Therefore, if 02 L(y;, fr\(z;))—i.e. approximately 82L(y,F£(P(1|xi)) N R) —does not
contain 0, the sample x; is a support vector whenever its sample value occurs only once in 7'
Continuing our motivation the previous considerations lead to

S = {(@) € Xeont x Y : 0 ¢ BL(y, F{(P(112)) NB) } |

where X ont := {z € X : Px({z}) = 0}. Now, for a convex loss function L and a Borel probability
measure P on X x Y we can define

s [P® i£0 & ByL(1, F{(1/2)) N L(~1, F (1/2))
LE = P(S)—F%PX(XO N Xcont) otherwise.

Here, we write X := {z € X : P(l|z) = 1/2}. Note, that for convex admissible loss functions
we have 0 ¢ 0o L(1, Ff(a)) N 2 L(—1, F} (c)) for all & # 1/2 (cf. Lemma 3.7). Recall, that for the
hinge loss function 0 € 0, L(1, F}(1/2)) N 0. L(—1, F}(1/2)) holds.

In order to state our results we need some further technical notations: for a loss function L
and a kernel k we define

L(1,0) + L(—1,0)
oy = y
Ly = Lyyx-sK5K] >

where K := sup{\/k(z,z) : © € X}. Furthermore, every convex loss function L is locally 1-
Holder-continuous. In this case we denote the 1-Holder constant of Ly by |Ly|; (cf. the following
section for a precise definition).

Now, we are in a position to formulate our results. The first theorem treats classifiers based
on (1). Its proof as well as the proofs of the following results can be found in Section 3.6.

Theorem 1.2 Let L be an admissible and convex loss function, k be o universal kernel and Ay, > 0
be a regularization sequence with A\, — 0 and nA2/|Ly, |2 — oo. Then for all Borel probability
measures P on X XY and all € > 0 the classifier based on (1) with respect to k, L and (\,)
satisfies

pr* (T € (X X Y)": #SV(fra,) > (Spp — 5)n> 1.

Here, Pr* denotes the outer probability measure of P™.



The next theorem establishes an analogous result for classifiers based on (2). Because of the offset
we have to exclude degenerated probability measures P, i.e. measures with

Px(z € X :Pylz)=1) = 1

for y =1 or y = —1. It is obvious that for such probability measures fT, »x = 0 holds for almost all
T. In particular, we have #SV (fr,) = 0 in this case.

Theorem 1.3 Let L be a strongly admissible, reqular and convex loss function, k be a uni-
versal kernel and X\, > 0 be a regularization sequence with A\, — 0, nA}/|Ly,|? — oo and
nAn/ (|Lx, 12| La, |3 logn) — oo. Then for all Borel probability measures P on X x Y and all
e > 0 the classifier based on (2) with respect to k, L and (\,) satisfies

Pre(T € (X x )" #8V(fra,) > (Spp—e)n) > 1.

We like to remark that in the previous theorem it is not necessary to require strongly admissible
loss functions. Indeed, the result holds for regular convex loss functions, too. However, the proof
for the latter is even more technical than the proof of Theorem 1.3. This, together with the fact
that every loss function of practical interest (cf. the examples below) is strongly admissible let us
state the above theorem in the present form, only.

The following propositions provide some lower bounds on Sy, p for important types of loss
functions. We begin with:

Proposition 1.4 Let L be a convex admissible loss function and P be a Borel probability measure
on X xY. Then we have

Spp > inf{P((x,y) € Xeont XY = f(x) ;éy) | f: X — Y measurable } .

In particular, Si,.p > Rp holds whenever Xcons = X.

Roughly speaking, the above result together with Theorem 1.2 and Theorem 1.3 gives lower
bounds for the number of support vectors for uniformly consistent classifiers based on (1) or (2),
respectively. Namely, the proposition shows that we cannot expect less than nR p support vectors
for such classifiers if X.,,; = X. Recall, that it is also well-known by many experiments that
the sparseness of SVM’s heavily depends on the noise of the underlying distribution. The next
proposition improves the lower bound on Sy, p for differentiable loss function:

Proposition 1.5 Let L be a convex admissible and differentiable loss function and P be a Borel
probability measure on X xY. Then we have

Stp > Px(z € Xeont 10 < P(1]z) < 1) .

Roughly speaking, this proposition shows that for differentiable loss functions the fraction of
support vectors is essentially lower bounded by the probability of the set of points in which noise
occurs. In particular, even if we have a small Bayes risk we cannot expect sparse representations
in general.

Together with our main theorems Proposition 1.5 also throws new light on the role of the
margin in SVM’s: namely, it is not only the margin that gives sparse decision functions but
the whole shape of the loss function. Indeed, comparing the squared hinge loss function (cf. the
examples below) and the least square loss function we obtain the same bad lower bounds on the
number of support vectors. Only in noiseless regions sparse representations seem to be more likely
using the squared hinge loss function since unlike the squared loss function this loss function does
not penalize samples with margin > 1.

We conclude this section by some important examples of classifiers based on (1) and (2):



Example 1.6 L1-SVM’s without offset are based on the minimization problem (1) with the hinge loss
function L(y,t) := max{0,1 — yt}. The conditions on (A,) formulated in Theorem 1.2 reduce to A, — 0
and nA2 — oco. Then, applying Proposition 1.5 yields lower bounds on the number of support vectors.
In particular, the number of support vectors is asymptotically bounded from below by nRp in the case
of X¢ont = X. We conjecture that this lower bound can be replaced by 2nRp. In order to explain
this conjecture recall that L1-SVM’s produce the same set of decision functions as the so-called »-SVM’s
(cf. [11]). Furthermore, as shown in [14] an asymptotically optimal value for the regularization parameter
v is 2R p. Recalling that v is also a lower bound on the fraction of support vectors (cf. [11]) leads to our
conjecture.

Example 1.7 L1-SVM’s with offset are based on (2) and the hinge loss function. The corresponding
conditions on (\,) of Theorem 1.3 can be unified to A, — 0 and nA3 — oo. Of course, applying Proposition
1.5 yields the same lower bound as for the L1-SVM without offset. However, if the distribution is in a
certain sense unbalanced this bound can be improved: for simplicity we suppose X.on: = X and Xy = 0.
We define X; := {z € X : P(1|z) > 1/2} and X_; := {z € X : P(1]z) < 1/2}. Recall, that these sets
are the classes which have to be approximated by the classifier. Furthermore, we define X! := X; x {j}
for i,j € {—1,1}. Under the assumptions of Theorem 1.3 we then obtain (cf. the end of Section 3.6 for a
sketch of the proof)

Pr* (T € (X x V)" #SV(fra,) > (Rup+ |[P(XL,) — P(X[Y)| - a)n) ~1 (5)

for L1-SVM’s with offset. In particular, if —1-noise and 1-noise do not have the same probability, i.e.
|P(X1,) — P(X;')| > 0 then (5) improves the result of Thereom 1.3. In the extremal cases P(X!,) = 0
and P(X; ') = 0 the lower bound in (5) becomes 2nR p which also corroborates our belief described in the
previous example.

Example 1.8 L2-SVM’s without offset are based on the minimization problem (1) with the squared hinge

loss function, i.e. L(y,t) := (max{0,1 — yt})Q. The conditions on (A,) formulated in Theorem 1.2 are
An — 0 and n)\fl — 00. The value of Sy p can be estimated by Proposition 1.5.

Example 1.9 L2-SVM’s with offset are based on the minimization problem (2) with the squared hinge
loss function. The conditions on (\,) of Theorem 1.3 can be unified to A\, — 0 and n\%/logn — co. If k
is a C*°-kernel the latter can be replaced by the slightly weaker condition nA% — oo (cf. [15] for details).
Again, the value of Sg p can be estimated by Proposition 1.5.

Example 1.10 Least square support vector machines are based on (2) with the squared loss function,
i.e. L(y,t) := (1 — yt)>. The conditions on (),) are the same as for L2-SVM’s with offset. Furthermore,
Sr,p is equal to the corresponding value for the squared hinge loss.

Example 1.11 Regularization networks or kernel ridge regression classifiers are based on the minimization
problem (1) with the squared loss function. The conditions on the regularization sequence coincide with
the conditions for the L2-SVM’s without offset. Again, the value of Sy, p can be estimated by Proposition
1.5.

Example 1.12 RI1-SVM’s for classification are based on either (2) or (1) using the e-insensitive loss
function L.(y,t) := max{0, |y — t| — €} for some 0 < & < 1. Our results coincide with the results for the
L1-SVM with or without offset, respectively.

Example 1.13 R2-SVM’s for classification are based on either (2) or (1) using the squared e-insensitive

loss function L. (y,t) := (max{0, |y —t| — 5})2 for some 0 < e < 1. Our results coincide with the results for
the L2-SVM with or without offset, respectively.

Example 1.14 One can also consider classifiers based on (1) or (2) using the logistic loss function L(y, t) :=
log(1 + exp(—yt)). With the help of Remark 3.19 we easily see that the lower bounds of Theorem 1.2 and
Theorem 1.3 hold with S p = Px (Xcont) for all regularization sequences (\,). In particular, if Xcon: = X
we have #SV (fr.\) = #SV (fr.x) = n for almost all training sets 7' of length n and all A > 0.



The rest of this work is organized as follows: in Section 2 we introduce further notations and
definitions. Section 3 which contains the (unfortunately very technical) proofs is divided into
several subsections. In Subsection 3.1 we recall some known facts from the subdifferential calculus
in Banach spaces. The following subsection establishes some useful results on convex admissible
loss functions. In Subsection 3.3 we prove a result which in particular describes the convergence of
fr, and fT, A, l;T, A, t0 F7(P(1].)). In the next subsection we first compute the subdifferential
of Ry, p. We then establish a result which describes the stability of the solutions fr ), and fT, A -
In particular it turns out that both are unique for standard SVM’s. We conclude this subsection
by showing (4). In Subsection 3.5 we refine the results of Subsection 3.3 by showing that the
described convergence is essentially independent of T for the solutions of (1) and (2). Finally, in
the last subsection we prove our main results which were presented in the introduction.

2 Preliminaries

In the following let R := [—o00, 00], R* := [0,00) and R" = [0,00]. Given two functions g,h :
(0,00) = (0,00) we write g < h if there exists a constant ¢ > 0 with g(g) < ch(e) for all sufficiently
small € > 0. We write g ~ h if both g < h and h < g.

For a positive definite kernel k£ : X x X — R we denote the corresponding RKHS (cf. [1] and
[2, Ch. 3]) by Hy or simply H. For its closed unit ball we write By. Recall, that the feature map
®:X - H, z— k(z,.) fulfills £(.,.) = (®(.), ®(.))g by the reproducing property. Moreover, k
is continuous if and only if ® is. In this case, H can be continuously embedded into the space of
all continuous functions C'(X) via I : H — C(X) defined by Tw := (w, ®(.)) g, w € H. Since we
always assume that k is continuous, we sometimes identify elements of H as continuous functions
on X. If the embedding I : H — C(X) has a dense image we call k a universal kernel (cf. [12,
Sect. 3]).

Recall, that for a given Borel probability measure P on X x Y there exists a map = — P(. |x)
from X into the set of all probability measures on Y such that P is the joint distribution of
(P(.]z))s and of the marginal distribution Py of P on X (cf. [5, Lem. 1.2.1.]).

Many important loss functions are not differentiable but convex. In order to treat these loss
functions we recall the concept of subdifferentials:

Definition 2.1 Let H be a Hilbert space, F' : H — R U {co} be a convex function and w € H
with F'(w) # oo. Then the subdifferential of F' in w is defined by

OF (w) := {w* € H : (wv—w)<F(v)—F(w) forallve H}
Given a subset A of H we often use the notation

OF(A) = |J 0F(w) .

wEA

For a geometric interpretation of subdifferentials we refer to [7, p. 6]. The following definition
plays an important role in the investigation of subdifferentials:

Definition 2.2 A set-valued function F : H — 2 on a Hilbert space H is said to be a monotone
operator if for all v,w € H and all v* € F(v), w* € F(w) we have

(v —w v —w)>0.

It is an easy exercise to show that the subdifferential map w — O0F(w) of a continuous convex
function F' : H — R on a Hilbert space H is a monotone operator.

As shown in [15] it is important for ensuring universal consistency that F}(a) only contains
elements with a “correct” sign. This is formalized in the following definition:



Definition 2.3 A continuous function L : ¥ x R — R’ with L(Y,R) C R is called a loss
function. Tt is said to be an admissible loss function if for every « € [0,1] we have

Fi(a) C [—00,0) if a<1/2
Fi(a) C (0,00,] it a>1/2.

Furthermore, we say that L is strongly admissible if it is admissible and card F}(«) = 1 for all
a € (0,1) with a # 1/2.

As shown in [15] the admissibility of L is necessary and sufficient in order to get universally
consistent classifiers based on (1). For classifiers based on (2) the admissibility is also necessary
and sufficient apart from some technical conditions. Moreover, it was proved in [15] that for
admissible loss functions there exists a measurable function f* : [0,1] — R with f*(a) € F}(a)
for all « € [0, 1].

An admissible loss function L is called convex if L(y,.) is convex for y = +1. A loss function
is said to be I-Holder-continuous if

|L(y7t) B L(yatl)|
|t — ']

|L|; = sup{ cy €Y, tt' eR, t;ét'} < 0.

Analogously, L is locally 1-Holder-continuous if Ljy «[_q,q is 1-Holder-continuous for all a > 0.
Recall, that convex loss functions are always locally 1-Hélder-continuous (cf. also Lemma 3.16).
In order to treat classifiers that are based on (2) we need the following definition from [15]:

Definition 2.4 An admissible loss function L is called regular if L is locally 1-Ho6lder-continuous,
L(1,.)|(—c0,0] is monotone decreasing and unbounded, L(—1,.)|j0,.c) is monotone increasing and
unbounded and for all v > 0 there exists a constant ¢, > 0 such that for all @ > 0 we have

: (6)

Note, that convex admissible loss function are regular if (6) and (7) hold (cf. Subsection 3.2).
Given a RKHS H the regularized L-risks are defined by

RS = A3 +Rep(f)
RS \(F0) = M3 +Rep(f+b)

Ly x| vanal | ¢y | Ly x|~ a.a]

<
<

Ly x—vanval |l cy[| L1y <[~aa)

for all f € H, b€ R and all A > 0. If P is an empirical measure with respect to T' € (X x Y)"
we write Ry 7(.), RZ%A(.) and RZ%A(., .), respectively. Note, that R’E%A(.) is the objective
function of (1) and R}7 ,(.,.) coincides with the objective function of (2). The following lemmas

show in particular that both optimization problems can be solved. The proofs can be found in
[15].

Lemma 2.5 Let L be an admissible loss function and H be a RKHS of continuous functions.
Then for all Borel probability measures P on X XY and all X > 0 there exists an element
fp,,\ € H with

Ry = ol R%(1)

Moreover, for all such minimizing elements fp € H we have || fpal| < 0x.

For classifiers based on (2) we have to exclude degenerated Borel probability measures in order to
ensure that the offset is real:



Lemma 2.6 Let L be a regular loss function and H be a RKHS of continuous functions. Then
for all non-degenerated Borel probability measures P on X XY and all A > 0 there exists a pair
(fp7/\, bp,,\) € H x R with

RihaUrabea) = 1nf R (4,0)
beR

Moreover, for all such minimizing pairs (fpy)\,gpy)\) € H x R we have ||fp,,\|| < 4y.

3 Proofs

3.1 Subdifferentials

In this part of the work we collect some important properties of subdifferentials. Throughout this
subsection H denotes a Hilbert space. We begin with a proposition that provides some elementary
facts of the subdifferential (cf. [7, Prop. 1.11.]):

Proposition 3.1 The subdifferential OF (w) of a convez function F' : H — R U {oco} is a non-
empty, convex and weak*-compact subset of H for all w € H where F is continuous and finite. If
F' is Lipschitz-continuous we also have |[w*|| < |F|1 for all w* € OF (w) and all w € H.

The next proposition shows that the subdifferential is in some sense semi-continuous. Its proof
can be found in [7, Prop. 2.5]:

Proposition 3.2 IfF': H — R is continuous and convez then the subdifferential map w — OF (w)
is norm-to-weak* upper semi-continuous. In particular, if dim H < oo then for all w € H and all
e > 0 there exists a § > 0 with

8F(w+5BH) - 8F(w)+5BH .

The following result characterizes minima of convex functions. Its proof can be found in [7,
Prop. 1.26]:

Proposition 3.3 The function F has a global minimum at w € H if and only if 0 € OF (w).

We are mainly interested in the calculus of subdifferentials. We begin with the linearity of sub-
differentials which can be found in e.g. [7, Thm. 3.16]:

Proposition 3.4 Let A > 0 and F,G : H — R be convex lower-semicontinuous functions such
that G is continuous in at least one point. Then for oll w € H we have:

i) OAF)(w) = AOF (w)
ii) O(F + G)(w) = 0F (w) + 0G(w).
The following proposition provides a chain rule for subdifferentials. A discussion of it can be found

in [9]:

Proposition 3.5 Let Hy, Hy be Hilbert spaces, A : Hi — Hy be a bounded and linear operator
and F : Hy — RU {oo} be a convezr function that is finite and continuous in 0. Then for all
w € Hy we have

O(FoA)(w) = A"0F(Aw),
where A* denotes the adjoint operator of A.



3.2 Some technical lemmas
The following lemma collects some simple but nevertheless useful facts about convex admissible

loss functions:

Lemma 3.6 Let L be a convex admissible loss function. Then L is locally 1-Hélder-continuous
and

i) 02L(1,0) C (—00,0) and 0, L(—1,0) C (0, 00).
i) for all t € R we have
0 ¢ 0oL(1,t) N0 L(—1,1) . (8)

i11) for all bounded subsets A C R there exists an € > 0 such that for all t € A we have

0 €82L(]_,t+EBR) ﬂ82L(—1,t+€BR) . (9)

Proof: i): Let us suppose that there exist an s € d»L(1,0) with s > 0. If s = 0 then 0 € 9,C(1,0)
and hence 0 € Fj (1) which contradicts the admissibility. If s > 0 then s’ > 0 for all s’ € d,L(1,1),
t > 0, by the monotony of the subdifferential. Therefore L(1,.) is monotonously increasing on
(0,00). This yields Fj(1) N (0,00] =  which also contradicts the admissibility. The second
assertion is proved analogously.

i1): Let us suppose that there exist a t € R with 0 € 02 L(1,¢) N 92 L(—1,t). Then we find

0€ d(aL(l,t) + (1 —a)L(—1,t)) = &C(a,t)

for all @ € [0, 1]. This leads to ¢t € F(«) for all @ € [0, 1] which contradicts the admissibility of L.
i17): Let us assume that (9) is false. Then for all n > 1 there exists t,, € A and d,,0,, € [-1/n,1/n]
with

0e 62L(1,tn + 5n) N 82L(—1,tn + (5;) .

Since A is bounded we may assume without loss of generality that (t,) converges to an element
t € R (otherwise we have to consider a convergent subsequence in the following). Then, given an
arbitrary € > 0 we find by Proposition 3.2

0 € BL(1,ty+6,) NO2L(=1,t, +6,,) C (02L(1,t) + eBr) N (82L(—1,t) + eBr)
for all sufficiently large n. This leads to

0€ ()(@:L(1,t) +Br) N () (0L(~1,t) +Bg) .
e>0 e>0

Since the subdifferentials 0> L are compact the latter implies 0 € 02 L(1,¢) N L(—1,¢) which con-
tradicts (8). ]

The next lemma collects some important facts about the solution operator F; for convex admissible
loss functions L:

Lemma 3.7 For a convex admissible loss function L the following properties hold
i) F} () is a bounded, closed interval in R for all o € (0,1).

i) for all a € [0,1] and all t € Ff(a) NR there exist sy € 2 L(1,t) and s_1 € 02 L(—1,t) with
S1 S 0 S S_1.

iii) for all a € [0,1], allt € F}(a)NR and all &/ € [0,1] with & > « there exists an s € ,C(c/,t)
with s < 0.



w) aw— Ff(a) is a monotone operator
v) card F}(a) > 1 for at most countably many « € [0, 1].
vi) for all t € F}f(1/2) we have

0€dL(1,t) = t=maxF;(1/2)
0€ L(~1,t) = ¢=minF;(1/2)

vii) let o € [0,1] with 0 € 0,L(1,F}(a)) N &L(—1,Fj()). Then we have a = 1/2 and
card Ff(1/2) > 1.

Proof: i): By Lemma 3.6 we know s < 0 for all s € 92L(1,0) and thus the definition of the
subdifferential leads to L(1,—o00) = oo. Therefore, we find —oco ¢ Fj(a) for all 0 < @ < 1.
Analogously we can show oo & Fj(a) for all 0 < o < 1. Moreover, Fj(a) is a compact subset
of R and therefore the previous considerations show that Fy(a) is closed and bounded for all
0 < a < 1. Since C(a,.) is convex it is also clear that F} () is an interval.
i1): For given ¢t € F}(a) N R there exists an s; € dpL(1,t) and an s_; € G, L(—1,t) with 0 =
as1+ (1 —a)s—y1. If a =1 we find sy = 0 and ¢ > 0 by the admissibility of L. The latter yields
s_1 > 0 by the monotony of the subdifferential and Lemma 3.6. The case & = 0 can be treated
analogously. Hence, it suffices to consider the case 0 < o < 1. Then we have s | = —1%=s;
which leads to either s_1 < 0 < s1 or 51 < 0 < s_1. Since the monotony of the subdifferential
and Lemma 3.6 yield that s; > 0 implies £ > 0 and that s_; < 0 implies ¢ < 0 we finally find the
assertion.
i13): Let a € [0,1] and ¢t € Fj(«) NR. Without loss of generality we may assume o < 1. Let us
fix 1 € 02 L(1,t) and s_1 € O, L(—1,t) according to 4i). Then we find s; —s_; < 0 by Lemma 3.6
and hence

s = ds1+(1-a)s_y < as+(1—a)s_y = 0.

Since the subdifferential is linear we also have s € 9,C(¢/, t) which shows the assertion.

iv): Let 0 < a <o <1aswellast e Ff(a) and t' € Ff(¢/). Since for t' = 0o or t = —o0
the assertion is trivial by i) we also assume t,#' € R. By iii) we find an s € 9,C(d/,t) with
s < 0. Then we obtain ¢’ > ¢ since otherwise we observe s’ < s < 0 for all ' € ,C(a/,t') which
contradicts ¢’ € Fj (o).

v): This is a direct consequence of iv).

vi): Let us suppose that there exists a t € F;(1/2) with 0 € 0,L(1,t) and ¢t < max F}(1/2). We
fix a t' € Ff(3/4). Since F} is monotone we have ¢’ > max F}(1/2) > t and hence the monotony
of B, L(1,.) yields 92 L(1,t") C [0,00). Since 0 € 9,C(3/4,t') the latter implies that there exists an
s € 0o L(—1,t") with s < 0. Therefore, by Lemma 3.6 7) and the monotony of d,L(—1,.) we find
t' < 0 which contradicts the admissibility of L. The second assertion can be proved analogously.
vit): By the assumption there exist ¢,t' € Fj(a) with 0 € 9,L(1,t) and 0 € 02L(—1,t'). The
monotony of d2L(1,.) implies ¢ > 0 and hence o > 1/2 by the admissibility of L. Analogously,
0 € 9oL(—1,t') yields a < 1/2. The last assertion is a direct consequence of Lemma 3.6 4i). W

Lemma 3.8 Let L be an admissible and convez loss function. Then for
S. 1= {(@,9) € Xeom x Y 10 ¢ 05 L(y, F{(P(1])) NR + =Bz) }

we have S: C S and S. C S+ for all e > ' > 0. Moreover, we have

USE = 9.

e>0
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Proof: Since the first two assertions are obvious it suffices to prove S C (J,, S:. Obviously, this
follows once we have established

N u lJ %L@¢+6ﬂi U &Ly (10)

e>0d¢e[—¢ce] teF;(a teF}(a)NR

for all @ € [0,1], y = £1. If Fj(o) NR = { inclusion (10) is trivial. Therefore, we assume
Ff(a) NR # (. Let us fix an element h of the left set in (10). Then for all n € N there exist
Op € [-1/n,1/n] and ¢, € F}(a) NR with h € 02 L(y,t, + 0y). If (,) is unbounded we observe
a € {0,1}. Furthermore, we find ¢, + 6, € F;(a) NR for a sufficiently large n since F}(«) is an
interval by the convexity of L. Hence we have shown (10) in this case.

If (t,) is bounded there exists a subsequence (t,, ) of (¢,) converging to an element ty € F; (o) NR
by the compactness of Fi(a) in R. Now let us fix an £ > 0. Since & L(y,.) : R — 2% is upper
semi-continuous by Proposition 3.2 we find

h e 82L(y7tnk + 5nk) C 82L(y7t0) + EBR

for a sufficiently large k. This yields
h € ﬂ (82L(y, to) + &?BR)
e>0

and thus we finally find h € 0, L(y, ty) by the compactness of 9, L(y, o). [ |

3.3 Asymptotic behaviour of the solutions I

In order to describe the asymptotic behaviour of fr ) and fT,,\ + INJT)\ we have to introduce the
following “distance function” for ¢t € R and B C R:

infeeplt —s| HBNR#D
min{l,i} if B = {00}

t,B) =
P, B) min{l, =~} if B = {~o0}

|—

otherwise,

~

where s; := max{0, s} for all s € R and 1/0 := co. Note, that p reduces to the usual definition
of the distance between a point ¢t and a set B if the latter contains a real number. For brevity’s
sake we also write

B(f,e) = {z€X:p(f(e), F£(P(1]2)) > ¢}

for € > 0 and measurable functions f : X — R. Note, that if F} (o) NR # 0 holds for all a € [0, 1]
then E(f,¢e) is the set of points where f differs more than ¢ from all functions minimizing Ry, p.
Now, we can state the following key result:

Theorem 3.9 Let P be a Borel probability measure on X XY and L be a loss function with
card Fj(a) > 1 for at most countably many « € [0,1]. Then for all € > 0 there exists a § > 0 such
that for all measurable functions f: X — R with Ry p(f) < Rp,p+ 0 we have Px(E(f,e)) <€

Proof: Let f : X — R be a measurable function and f;, p := f*(P(1].)), where f* is a measurable
selection from F}. Then for E := E(f,¢) we find

Vv

Rep(f) //Mmmm mmmm+/ Ly, f (x)) P(dy|) Px (dz)

X\E Y E

Y
= T\’,L’p—F//(L((y,f((II) y frp(x )P dy|z)Px (dx) .
EY
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Let G:(a) := {s € R : p(s, Fj(a)) > e} if there exists an s € R with p(s, Ff(a)) > €, and
G: (@) := R otherwise. Since in both cases G:(«) is closed in R there exists f,(«) € G-(a)U{Fo0}

Cle, fu(a)) = tEiGrif(‘a)C(a,t)

for all @ € [0, 1]. Moreover, by the assumptions on L we can assume that the function f, : [0,1] —
R is measurable. The definition of f, and our first estimate yields

Rrp(f) > RL,P+/ AdPx ,
E

where

Alz) = /Y Ly, £(P(112))) = L{y, f1.p()) P(dylz) -

Since our construction guarantees A(z) > 0 for all
z € X, = {$ € X : 3s € R with p(s, Fj (P(1|z))) > 5}

the restrictions of the measures Px and AdPx to XE are absolutely continuous to each other.
Now, the assertion easily follows from E C X.. |

Remark 3.10 The assumption card F}(a) > 1 for at most countably many a € [0, 1] in the above theorem
was only used to ensure the measurability of f.. We suppose that this assumption is superfluous.

Remark 3.11 As shown in [15] there exist kernels and sequences of regularization parameters such that for
the corresponding classifiers based on (1) and (2) we have Ry, p(frx,) = Ri,p and R p(fra, +bra,) =
Rr,p, respectively. In this case, Theorem 3.9 e.g. yields

Px (E(frp.,€)) =0
for all € > 0. In particular, if F}(a) C R and card Fj(a) =1 hold for all a € [0, 1] then
I fr.x, = fr.pllo =0 (11)

holds in probability for |T'| = n — oo. Here

1l = /X min{1, |f|}dPx

is a translation invariant metric which describes the convergence in probability with respect to Px in the
space of all measurable functions Lo(Px). The aim of the following sections is to show that for convex and
(strongly) admissible loss functions Theorem 3.9 and in particular (11) can be improved. Namely, we show
that the set E(fr x,¢e) describing the e-discrepancy of fr, from fr p is “essentially” independent of T'.
This will allow us to control the behaviour of fr , on the samples of T'.

Remark 3.12 Theorem 3.9 does not only apply to classifiers of SVM type. Indeed, it describes the
limiting decision function and the corresponding convergence for every classifier minimizing a (modified)
L-risk provided that the L-risks Rz p(fr) of its decision functions fr converge to Rr p. Recall, that the
latter condition also ensures universal consistency for admissible loss functions.

3.4 Stability

In this section we show that the decision functions of the classifiers based on (1) or (2) are
concentrated around the minimizer of R}°%, | if the loss function is convex. In order to unify the
following considerations we define

REDaalf) == MAFI; + Rep(f)
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for a RKHS H, a projection A : H — H, a loss function L, f € H and A > 0. Our first aim

is to derive a formula for the subdifferential of R}°%, ,(.). Besides the calculus presented in

the preliminaries we also need an integration rule in order to treat the integral Ry, p(.). Due to
technical reasons it is convenient to split the latter: for a Borel probability measure P on X XY
and a measurable B C X we define

PLB) = /X 15(2) P(1]2) Px (dx)
Pi(B) = /X 15(2) P(~1|z) Px (dx)
where 1p denotes the indicator function of B. With the help of these measures we set
RE(D) = [ L0 f@) P (o)
Rip(f) = [ L1 f(@) P (o

for admissible loss functions L and measurable functions f : X — R. Obviously, we always have
Re,p(f) = RE p(f) + RL p(f). In the following proposition we collect some useful properties of

RE p():

Proposition 3.13 Let L be a convex and Lipschitz continuous loss function and P a Borel prob-
ability measure on X x Y. Then the functionals RfLC,P : LQ(P;(C) — [0, 00] are convez, finite in 0
and continuous in 0. Furthermore, for all h € Lo(P) we have

ORE p(h) = {h* € Ly(PX) : h*(z) € OL(+1,h(x)) Px-a.s} . (12)

Proof: We only have to consider R'L'r p- Using the notions of [8] we first observe that L(1,.) is a
normal and convex integrand (cf. [8, p. 173]). In particular, RJLr p s convex. Since 7?,2r p(0) =
L(1,0) P (X) € R the equation (12) then follows by [8, Cor. 3E.].

In order to prove the continuity in 0 let (f,) C L2(Py) be a sequence with f, — 0. Then for
e>0and A5 :={x € X : |fn(z)| > €} one easily checks that there exists an integer ng such that
for all n > ny we have both Pif(A4%) < e and

/ FaldPE < e
A

Moreover, the Lipschitz-continuity of L yields L(1,¢) < |L|i|t| + L(1,0) for all ¢ € R. Therefore

we obtain
A

/|L|1|fn|+L(1,0)dP;+/ |L|1le| + L(1,0) dPy:
Ag X\Ag

< 2¢|L)i + R} p(0)

R p(fa) LS PE+ [ L f) Py

X\Ag

VAN

and hence limsup,,_, R;;P(fn) < R;;P(O). In order to show R;;P(O) < liminf,, R;;P(fn) we

observe that for h = 0 and e = 1 we have L(1,h(.) + a) € Lo(Py) for all |a| < e. Therefore [8,
Cor. 3D.] and [8, Prop. 3G.] yield the lower semi-continuity of R}  at 0 with respect to the weak

topology of LQ(P;(—). In particular, R'L'r p 18 lower semi-continuous at 0 with respect to the norm,
ie. RY p(0) < liminfy, o0 RY p(fn)- |

13



Proposition 3.14 Let k be a continuous kernel with RKHS H and feature map ® : X — H.
Moreover, let A: H — H be a projection, L be a convex and Lipschitz-continuous loss function
and P be a Borel probability measure on X XY . Then for all f € H we have

37?,26’:%,)\’14(]‘) = 2XAf + {Eph® : h € Lo(P), h(z,y) € L(y, f(z)) P-as.} .

Proof: Let I* : H — Ly(P5) be the natural inclusions, i.e. I*f := (f,®(.)) for all f € H.
Then we observe that R’E?D’)\’A(f) = NAfAf) + R"LF’P(IJrf) + Ry p(I” f) holds. The continuity
of L and k ensures Ri p(ITf) € R for all f € H. Furthermore, using Lebesgue’s dominated
convergence theorem we easily see that Ri pol +: H — R are even continuous. Therefore, the
linearity of the subdifferential and 8||||§I( f)=2f imply

IR\ A(f) = 20Af + O(RE p o IT)(f) + (R po I7)(f) .

Now, R} p : Lo(Py) — [0,00] is continuous in 0. Hence, the chain rule of Proposition 3.5 together
with Proposition 3.13 yields

OREpoI")(f) = (IM) Ry p(I"f)
= (Rt e Ly(PY) ¢ Wt (@) € OL(L, f(x)) Pi-as}).

Since the adjoint operator of I maps every h € Ly(P5) to (IT)*h = Eps h® we obtain

ORY poI*)(f) = {]EP;hJ“(I) : bt € Ly(PY), k' (z) € OL(1, f(z)) P{-as.} .
Analogously, we get

IR pol )(f) = {]EP); h™® : h™ € Ly(Py), h (z) € OL(-1, f(z)) Px-as.} .
Using the notation h(z,1) := h*(z) and h(z,—1) := h™(z) we thus find

ORL poIN)f)+ (R pol )(f) ={Eph® : he& Ly(P), h(z,y) € & L(y, f(z)) P-as.} .

Finally, Lo(P) can be replaced by Ly(P) since L is Lipschitz continuous. [ |

The result of Proposition 3.14 has already been presented in [16]. However, the claim therein

that Proposition 3.14 can be proved using subdifferential calculus on finite dimensional spaces is

obviously not correct. For differentiable loss functions Proposition 3.14 is more or less trivial.
Now we are able to prove the main result of this subsection:

Theorem 3.15 Let L be a convex loss function, H be o RKHS of a continuous kernel with feature
map ©: X - H, A: H — H be an orthogonal projection and P be a Borel probability measure
on X xY. Assume that RTLQ%/\A can be minimized and that there exists a constant ¢ > 0 such
that ||fp7)\||oo < ¢ for all fp,/\ € H minimizing Rzej,’)\,A. Then there ezists a measurable function
h: X xY — R with ||h||, < ‘L|YX[_C’C}‘1 such that for all Borel probability measures Q and every
element fQ,)\ € H which minimizes RTLf’:%’/\,A and satisfies HfAQ,)\HOO < ¢ we have

Ifpa = foull IEph® — Eqhd|
A .

For the proof of Theorem 3.15 we need the following simple lemmas which will not be proved:

IAfpx — Afgull® <

Lemma 3.16 Let f : R — R be a convex and continuous function. Then f restricted to [—a,a],
a > 0, is Lipschitz continuous and we have

2
ficaal < 2020 -
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Lemma 3.17 Let f : [a,lz] — RT be a conver and Lipschitz continuous function. Then there
exists a convex extension f: R — RY of f that is Lipschitz continuous with |f|1 = |f|1.

Proof of Theorem 3.15: Let us first assume that L is Lipschitz continuous. Since fpy)\ mini-
mizes RTL&:%, A4 We observe 0 € 37?,28337 aa(fpa). Thus, by Proposition 3.14 there exists a function

h € Lo(P) with h(z,y) € &2L(y, fpa(z)) for P-almost all (z,y) € X x ¥ and
0 = 24\ fpy +Eph® . (13)

By the Lipschitz-continuity and Proposition 3.1 we actually have |||, < |L|i. Moreover, we can
assume without loss of generality that h(z,y) € 02L(y, fpa(z)) for all (z,y) € X x Y. Then we
obtain

h(z,y) (for(@) — fra(2)) < Ly, fou(®)) — Ly, fra(2))
for all (z,y) € X x Y. Integration with respect to @) then yields
Er )@ Ly, fra(@) + (for = fraEQh®) < Eg gLy, foa(x)).

Since M| Afpall2 +2MAfgx — Afpa, fra) +AAfpr— Afoal? = M|Afgall? the latter inequality

implies
REG \Alfra) + (fon = fraBh® + 2XA% fp)) + M Afpx — Afoul® < REL o) -

Moreover, fq ) minimizes R x4 and hence we have RTL%’/\,A(JEQ,,\) < RTL%,,\,A(fp,,\). This and
A* = A yield

N Afpx — Afoal? < (fra— for Eoh® + 20Afp,)
Ilfpx — foull [EQh® + 2XAfp )

IA

With the help of (13) we can replace 2AA f p by —Eph® and thus the assertion follows.
In the general case we know by Lemma 3.16 that L restricted to ¥ x [—¢, c] is Lipschitz contin-
uous and thus there exists a Lipschitz continuous extension L according to Lemma 3.17. Since

RT;?D \ 4 and Rge"é) s 4 coincide with RY 4 and Rze"é? y 4 on cBpr, respectively, we then obtain
the assertion. ]

Remark 3.18 Taking P = (@ in the previous theorem we immediately obtain that A fp7 A IS wnique. In
particular, the problem (1) has always a unique solution for convex loss functions. Furthermore, it is obvious
that this also holds for L1- and L2-SVM’s with offset since in these cases we have ||fpallco < 2 + 2K 4.

Remark 3.19 Equation (13) is a general form of the well-known representer theorem. Indeed, (13) reduces
to

AfT)\ = Zalk(xl,)
i=1

for training sets T' = ((a:l,yl), vy (zh, yn)) € (X x Y)™ and suitable coefficients a,...,a, € R. Further-
more, the above proof showed (4), i.e.

1 ~
w; € —%82[1(?/1" fT,A(wi))

for all ¢ = 1,...,n. Therefore, a sample z; must be a support vector of the above representation if
0 &€ 02 L(yi, fr,x(x;)). In order to prove lower bounds on the number of support vectors it hence suffices to

know the behaviour of fT, » on T'. This will be our key idea in the following considerations.
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3.5 Asymptotic behaviour of the solutions II

In this part we refine the results of Subsection 3.3 concerning the asymptotic behaviour of the
solutions of (1) and (2). We begin with:

Proposition 3.20 Let L be a convex loss function, H be a RKHS of a continuous kernel and P
be a Borel probability measure on X x Y. Then for alle >0, A >0 and all n > 1 we have

2 \%n

P”(T X xY): _ >)<2 (— )
€ (X xY)":|fra— frall >€) < 2exp 8K2| L[ + 2eAK|Ly|y

For the proof we will need the following result which is a reformulation of [18, Thm. 3.3.4]:

Lemma 3.21 Let n,...,n, be bounded i.i.d. random variables with values in a Hilbert space H.
Assume ||nil| < M for alli=1,...,n. Then for all e >0 and all n > 1 we have

P (H%zn:(m—]Em)

52n
‘26 = 2eXp(_8M2+4sM>'

Proof: Apply [18, Thm. 3.3.4] to & :=n; — En;, H :=2M, B :=2M/n and z := 52\]@ [ ]

Proof of Proposition 3.20: By Theorem 3.15 we know A||fpx — fral| < [|[Eph® — Erh®|| for
a suitable function A : X x Y — R independent on T'. Moreover, our specific situation guarantees
|hlloo < |Lali- Applying Lemma 3.21 to n; := h(xi,y:)®(z;), ¢ = 1,...,n, and M = K|Ly|; we
thus obtain

p" (T € (X XYV ¢ ||fra— frooll = 5) < pn (T € (X X Y)": |[Erh® — Ephd| > E>\>

2X%n ) ‘

< 9 (—
= SOPATSK2LAP 1 4eAK L]y

With the help of Proposition 3.20 we are now able to show that E(fr ), ) is essentially independent
of T, i.e. it is contained in a small set which only depends on the training set size n and the accuracy
€. The precise result is stated in the following proposition:

Proposition 3.22 Let L be an admissible and convez loss function, H be a RKHS of a universal
kernel and P be a Borel probability measure on X XY . Let us further assume that (\,) is a sequence
of strictly positive real numbers with A, — 0 and nA\2/|Ly, |? — oo. Then for all € € (0,1) there
exists a sequence of sets Fn(e) C X with Px(Fnp(e)) — 0 and

P”(T € (X xY)": E(fra,,€) C En(a)) 1.
Proof: For training sets T' with ||frx, — fpa.l| < 5% we immediately obtain E(fr,,e) C
E(fpx,,€/2). Since nA2/|Ly, |1 — oo Proposition 3.20 ensures that the probability of such
training sets tends to 1. Finally, A\, — 0 yields Ry p(fpy,) — Rir,p by [15, Prop. 3.2] and
therefore, Theorem 3.9 shows that E(fpy,,e/2) are the desired sets for large n. [ ]

Remark 3.23 Proposition 3.22 also holds for convex loss functions satisfying the assumptions of Theorem
3.9.

In the rest of this section we show that Proposition 3.22 also holds for classifiers based on (2).
Unfortunately, it turns out that their treatment is a bit more technical. We begin with a result
which is analogous to Proposition 3.20:
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Proposition 3.24 Let L be a regular and convez loss function, H be a RKHS of a continuous
kernel, and P be a non-degenerated Borel probability measure on X XY . Then for all € > 0 there
exists a constant ¢ > 0 such that for all A € (0,1) and all n > 1 we have

n n o UF z et \3n
P (T € (X xY)" |l fra = feall = 5) < 4exp(—c W>
1
Proof: It was shown in [15, Lem. 2.6 and Lem. 5.2] that there exists a constant ¢ > 0 with
lbp| < ¢+ 0\K for all A > 0 such that

Pr*(T € (X x V)" : |bpy| <é+0\K forall A >0) > 1 —2e™ (14)

holds for all n > 1. We define L := Ly x[-a,a), where a := ¢+ (1 + K)d). Then we can apply
Theorem 3.15 to the training sets considered in (14). This gives us a function h: X x Y — R
with |||, < |La|1 and

Pt (T: 1o — Fralls < 1(fpp, bpa) = (frps brp)llHe.r |EPAD _Ef’h(I)HH> > 1 -9

A
Moreover, for the training sets considered in (14) we always have
1(FppsbpA) = (Frosbrp) lresr < Ifpa — frallm + bpa — bral < 28+ 2(1+ K)dy -

Wlth g = 254“2(512% we thus find

p" (T € (X xY)": |lfra — foall > g) < pn (T € (X xY)": |Eph® — Ephd| > 5) 4 emen
£2n

8K2|L)\|% +4§K|L)\|1

< 2exp(— ) + 2~

Using £ ~ €232 and 8K?|Ly|? + 46K|Ly|; < |Ly|? for fixed € and A — 0 we then obtain the

assertion. [ |

The following proposition essentially states the result of Proposition 3.22 for classifiers based on
(2). Due to technical reasons we must restrict the class of probability measures for which the
result holds. This lack will cause further technical difficulties in the proof of Theorem 1.3.

Proposition 3.25 Let L be a strongly admissible, reqular and convex loss function, H be a RKHS
of a universal kernel and P be a non-degenerated Borel probability measure on X XY with

PX<:1: € X:P(llz) ¢ {0,1/2,1}) >0.

Let us further assume that (\,) is a sequence of strictly positive real numbers with A, — 0,
nAY /Ly, |2 — oo and nAn /(|| L, 2| Lx, |3 logn) — co. Then for all sufficiently small € > 0 we
have . . . .

Pri(T € (X xY)" : | fra, +brn, — frr, — b lloo <€) = 1. (15)

Moreover, for all sufficiently small € > 0 there exists a sequence of sets E,(¢) C X, n > 1, with
Px(E,(e)) — 0 and

p" (T € (X xY)": E(fra,.€) C En(g)) 1. (16)
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Proof: We define X := {z € X : P(ljz) € {0,1/2,1}} and fix an & with 0 < ¢ < Px(X).
Furthermore, for £/4 we chose a § > 0 according to Theorem 3.9. Let us suppose that we have a
training set T' with RL,p(fT,,\n + ET,An) <Rrp+dand ||fT,>\n — fp7/\n’|00 < e/4. Recall, that the
probability of such training set converges to 1 by [15, Cor. 3.19] and Proposition 3.24. Now, the
assumptions on T yield

Py (2 € X : |fra, (2) + brn, — frp(@)] < e/4) > %PX()”() .

Note, that unlike by, the value fr, p(z) € Fj(P(1|z)) is uniquely determined for all z € X by
the assumptions on L. Moreover, for sufficiently small )\, we also have

Px(J? S X: |f7p’/\n($) +i)p,)\n - fLyp(:L‘)| < 5/4) > ;P)((X) .

Hence there exists an element zo € X with |fT7)\n (o) + IST,,\TL — fr,p(z0)| < /4 and |fp,,\n (zo) +
bpx, — fr,p(z0)] < €/4. Since this yields

b7 — bl < 1fran (@) + b, — Fra, (@0) = b, | + 1 fra, — Fralloo
< fran (@) +br o, = fr.p(@o)| + [P, (%0) + 0Py, — fLp(x0)| + /4
3
< 16
we find (15). The second assertion can be shown as in the proof of Proposition 3.22. |

3.6 Proofs of the main theorems

Proof of Lemma 1.1: Let H be the RKHS of k and ® : X — H be the associated feature map,
ie. ®(z) = k(z,.), x € X. Obviously, we only have to show that ®(xzy),...,®(x,) are linearly

independent in H if and only if x1,...,z, are mutually different. Let us suppose that zi,...,z,
are mutually different but ®(z1),...,®(x,) are linearly dependent. Then we may assume without
loss of generality that there exists coefficients Ay,..., A,_1 € R with

n—1
O(zn) = Y Ni®(w) -
=1

Since k is universal there exists an element w € H with (w, ®(z,)) < 0 and A\;(w, ®(z;)) > 0 for all
i=1,...,n—1 (cf. [12, Cor. 6]). From this we easily get a contradiction. The other implication
is trivial. m

Proof of Theorem 1.2: For brevity’s sake we only prove the assertion in the case of 0 €
02 L(1,Ff(1/2)) N 02 L(—1, F;(1/2)). The proof of the other case follows the same line but is
slightly less technical. Obviously, it suffices to show the assertion for small ¢ > 0. By Lemma 3.6
we find an ¢ € (0, 1) with

0 ¢ 0y L(1,t 4+ eBr) N &y L(—1,¢ + e Bg) (17)

for all t € Ff(1/2) 4+ eBr. Moreover, we fix a § € (0,¢) with Px(S5) > Px(S) — ¢/2, where S; is
the approximation of S defined in Lemma 3.8. Let us define

Xf 5 = {2 € XoN Xeou 10 ¢ L1, frp, (2) + 0B) }

X5 = {2 €XoN Xoont 10 ¢ HL(=1, frp, (2) + 0Bz) }
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for alln > 1. With the help of (17) we immediately obtain (XoNXeont)\E(fpa,,8) C X, ;UX s C
X0 N Xcont- Therefore, by Theorem 3.9 and [15, Prop. 3.2] we find

Px (X, ;U X, 5) > Px(Xo N Xeont) — €/2

for all sufficiently large integers n. Hence, by the definition of § we have
1 n _ 3
Px(Sy) +§Px(Xn75UXn,5) >SLp— ZE (18)
for all sufficiently large n. In order to consider “representative” training sets we define
Cr.s = card {z : (24, 9i) € S5\ (Ba(8) X V) or (zi,y:) € X;F5 x {1} or (z4,1) € X5 % {—1}}

for all training sets T' = ((z1,y1), .-, (Zn,yn)), n > 1, where E,(J) are sets according to Proposi-
tion 3.22. Our above considerations together with Proposition 3.20, (18) and Hoeffding’s inequality
yield

pr* (T € (X XY)":Cry > (Sp.p—e)n, E(fra,,0) C En(8) and || frx, — franlle < 5) S

for n — oo. Therefore, let us consider a training set 7' with E(fr ,,0) C E,(§) and a sample
(zi,yi) of T with (z;,y;) € S5 and z; € E,,(0). Then we have z; &€ E(fr,,,0) and the definition
of S5 leads to

0 ¢ 0oLy Ff (P(1]31)) NR + 6z .
Furthermore, the definition of E(fr,,0) ensures
fra, (%) € FE(P(1|z;)) "R + 6By

if F}(P(1|z;)) "R # 0. Hence we find 0 ¢ 02L(y;, fr,», (xi)) in this case, i.e. z; is a support vector
of the representation of fr ), as discussed in Remark 3.19. Moreover, since z; € Xy we also
observe that the sample value of z; occurs P™-almost surely only once in T'. Therefore, x; is even
P"-almost surely a support vector in all minimal representations of fr,. If Fj(P(1]|z;))NR =0
we have either P(1|z;) = 0 or P(1]|z;) = 1 by Lemma 3.7 and the admissibility of L. Without loss
of generality we may assume P(1|z;) = 1. Then we have Fj(1) = {oo} and hence 0 & 0, L(1,R).
Therefore, the sample x; is P"-almost surely a support vector in all minimal representations
whenever y; = 1. The latter is P"-almost surely fulfilled since P(1|z;) = 1.

Now, let us consider a sample (z;,y;) € X:,& x {1} of a training set T" with || frx, — fpa, [l < 0
Then we observe fr ., (z;) € fp,(%;) + dBr and hence 0 & 02L(yi, fr,x, (xi)) by the definition of
X:, s5- Again this shows that x; is P"-almost surely a support vector in all minimal representations
of fry,. Since the same argument can be applied for samples (z;,y;) € X, s x {—1} we have
shown the assertion. [ ]

Proof of Theorem 1.3: If P is a probability measure with
Py (w € X : P(1|z) ¢ {0,1/2, 1}) >0 (19)

the proof is analogous to the proof of Theorem 1.2 using Proposition 3.25 instead of Propositions
3.20 and 3.22. Therefore, let us suppose that (19) does not hold. In order to avoid technical
notations we may also assume X = X,,; without loss of generality. Furthermore, if 0 ¢ 92 L(Y, R)
every sample z; € X.opy of a training set T € (X x Y)" is P"-a.s. a support vector in all
minimal representations. Since Sp p = Px(Xcont) = 1 the assertion is then a simple exercise.
If 0 € 02 L(Y,R) we first assume that 0 € 02 L(1,R) N, L(—1,R). Then we have S C Xy x Y
P-almost surely and therefore samples z; € X can be neglected. Hence we may assume without
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loss of generality that Py (Xo) = 1. In order to motivate the following construction let us first
recall that we cannot control the behaviour of l;T, » in our situation. This makes it more difficult
to define a subset Xg of Xy such that a) Xg is “essentially” independent of T and b) f T T l;T7 A
maps into F5(1/2) + eBg on X..

Therefore, our first step is to construct such a set X.: for measurable f: X — R and £,6 > 0 we
define

bes(f) = sup{b €ER:Px(z€X: f(z)+b>maxFj(1/2) +¢) < 5}
bos(f) = inf{b ER:Py(r€X: f(z)+b<minFi(1/2) —¢) < 5} :
It is easily checked that the supremum in the above definition is actually a maximum, i.e.
Px(z € X : f(z) +bes(f) > max Ff(1/2) +¢) <4 . (20)
The same holds for the infimum, i.e.
Py(w € X : f(2) +b.5(f) < minF}(1/2) —¢) <4 . (21)
Furthermore, we define
Xos(f) = {w€ X1 f(@) +Teg(f) < max F{(1/2) + € and [(2) +b. () > min Ff(1/2) = ¢}

Inequalities (20) and (21) yield
Pe(Xea(f) > 1-25. (22)

Moreover, if we have two bounded measurable functions f,g : X — R with ||f —g| < € we
easily check

5,5(9) +e (23)
es(9) T e (24)

5,5(9) —€
5,6(9) - €

Sl
IA N
IS oo
IA N
IS oo

By [15, Lem. 3.18] we find RL,P(fT,/\n + (;T,,\n) — Rr,p in probability for n — co. Then Theorem
3.9 states that for all ¢ > 0 and all § > 0 we have

pr (T € (X x Y)": Py (E(fro, +bra,,e)) < 5) —1 (25)
for n — co. Now, let us assume that we have a training set 7" of length n with
Px(E(frp, +bra,.€)) <6 (26)

and ) )
1 fra, — fPanlloc <€ (27)

Recall, that the probability of such T also converges to 1 by Proposition 3.24. Then (26) yields
b s(fra,) < bro, < bes(frpa,). By (23), (24) and (27) we hence find

fro, (@) +br, € Fp(1/2) + 3¢Br (28)

for all z € XE,(g(fp,,\n), ie. Xa,g(fp,)\n) is our desired set mentioned at the beginning. If 0 ¢
02 L(1, Ff(1/2)) N 02 L(—1,Ff(1/2)) the rest of the proof is more or less canonical: fix a small
d > 0 and choose an ¢ > 0 with P(S;) > Sg p — 0. Then, consider only training sets 7" which are
“representative on Xs,g(fp,,\nz N S: up to 0” and which fulfill both (26) and (27). For these T we

find P"-almost surely #SV (frx,) > (Sr,p — 46)n.
As in the proof of Theorem 1.2 technical problems arise in the case of

0 € oL(1, F(1/2)) N doL(—1, F}(1/2)) . (29)
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Even worse, the techniques used there cannot be applied in our situation since we cannot control
the behaviour of IST, A,- The key idea for solving these difficulties is the observation that for ¢ €
F7(1/2) the subdifferentials d2L(y,t) can only contain 0 at the boundary of F7(1/2) (cf. Lemma
3.7). Since we only have to prove the assertion for small ¢ > 0 we fix an ¢ > 0 with ¢ <
(max Fj(1/2) — min F}(1/2)) /4. Recall, that such € actually exist by our assumption (29) and
Lemma 3.6. For 6 > 0 and n > ny we define

Xin = {o € XeolFra)  F(0) +eslfrn,) € max F(1/2) + eBr |
Xgm = {7€Xes(Frn): £(0) +beg(fpa,) € minFy(1/2) + eBx }
Xg,é,n = X6,5(fp,)\n)\(Xié,nUXf;,&,n) :

Furthermore let us assume that we have a training set 7' of length n with || ny P fpy A lloo < €/3
and Py (E(fT,,\n + bTy)\n,e)) < 0. Let us suppose that we have a sample (z;,1y;) of T with

z; € X:&n‘ If l;T,An > 56,5(fp,>\n) — 2¢ we get

fron (@) +bry, > fra.(@) +bes(fra,) — 3 > max Ff(1/2) —4e

and hence we find fr, (z) + by, € maxFj(1/2) + 4eBg by (28). Since min F}(1/2) ¢
max F7(1/2) + 4eBgr by the choice of ¢ the sample z; is P"-a.s. a support vector in all mini-
mal representations of fr, if y; = —1 (cf. Lemma 3.7). If by, < b. 5(fp,) — 2¢ we find

fron (@) +bry, < fpa. (@) +b5(fpa,) —€ < max Ff(1/2) .

Therefore, z; is P™-a.s. a support vector in all minimal representations of ny A, ify; = 1. Obviously,
analogous considerations can be made for samples in X_5 . Finally, for a sample z; € X g sm WE
obtain

N 3 3 L 9 .
Jro, () + b1, < fP,An(ﬂf)vaa,é(fP,An)JrgE < max F7(1/2) —¢/3

and hence z; is P™-a.s. a support vector of a minimal representation of fT,/\n if y; = 1.
With the above considerations the proof can be finished as in the case 0 ¢ 0;L(1,F}(1/2)) N
02 L(—1,F}(1/2)).

The remaining case 0 € 02 L(Y,R) with 0 ¢ 0, L(1,R) N 92 L(—1,R) can be treated similarly to our
considerations in the case 0 € do L(1,R)Ndx L(—1,R) with 0 & 0, L(1, F} (1/2))N02 L(—1, F} (1/2)).
]

Proof of Proposition 1.4: The assertion is a simple consequence of 0 & 82L(1,F}'j(a)) N
&»L(—1,Fj(a)) for all o # 1/2 (cf. Lemma 3.7). [ ]

Proof of Proposition 1.5: In order to prove the assertion it suffices to show
0 ¢ 0 L(Y, Fi(a) NR)

for all @ € (0,1). Let us assume the converse, i.e. that there exists an o € (0,1), a y € Y and
at € Ff(a) NR with 0 € 0,L(y,t). Without loss of generality we may assume y = 1. Since
L is differentiable we have 0;L(1,t) = {0}. Hence 0 € 0,C(«,t) implies 0 € 92 L(—1,t) which
contradicts Lemma 3.6. |

Proof of Example 1.7: Due to space limitations we only sketch the proof: let ( ny A IST, A,) be
a solution of (2) with a representation

fron = Y yicik(zi,.)
i=1
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found by solving the dual problem of (2) (cf. [3, Ch. 6]). Since X on¢ = X this representation is
almost surely minimal. Furthermore, we have

n
OZZyiOzi: Zai— Zai—i- Zai— Zai.
=1

(zi,y:)€X] (ziyi)ext (w5,y:)€X (ziyi)EX_E

Without loss of generality we may assume P(X; ') > P(X',) and Ry p > 0. We fixa p € (0,1/3).
Let us assume that we have a training set 1" that is representative on Xg 4,7 € {—1,1} up to p
and additionally satisfies both Py (E(fp,)\n +EP’,\n, p)) < p and “fT,/\n —i—ET,,\n — fp’/\n — l~)p’>\n lloo < p-
Recall, that the probability of such training sets converge to 1 by Proposition 3.25. Then Remark
3.19 for the L1-SVM yield

1 1
;> n(P(X7h) - > ——(P(X7") -
Z al—n( ( 1 ) p)2>\nn = 2>\n( ( 1 ) :0)
(wiyi)eXT !
Analogously we find
1
2\, n 2\,
(xivyi)eXil
Together, both estimates almost surely lead to
1 _
(ziyi)€X] (@iyi) X1
< Do
(ziwi)€XT]
a; >0
1
< Kcard {i:(zi,y) € X/ is a support vector .
n
Since up to pn exceptions all samples in X lux 11 are support vectors the assertion then easily
follows. |
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